
SAP AG Using OCX Controls

Overview

May 1997 2–1

Chapter 2: Using OCX Controls

Overview

The following sections provide guidance on using the SAP Automation Server objects.
All code examples are provided in Visual Basic 4.0.

Contents

Summary of OCX Controls ... 2–3

Possible Uses for OCX Controls.. 2–4

Summary of Programming Tasks .. 2–5

Variation using the Dynamic Calling Convention ... 2–7

Creating the Base-level Control ... 2–8

Connecting to the R/3 System.. 2–8

Using the Logon Control to Connect to R/3 .. 2–9

Using the Function Control .. 2–10

Requesting Functions .. 2–11

Adding a Function .. 2–11

Setting Parameter Values ... 2–11

Viewing Table Objects .. 2–12

Using Parameter and Structure Objects.. 2–12

Using Named–Argument Calling Conventions.. 2–13

Using the Table Factory Control .. 2–14

Using the Transaction Control ... 2–14

Using the Table View Control .. 2–15

Using Collection Objects.. 2–18

Performance and Debugging Tips ... 2–18

SAP Control Base Classes ... 2–19

SAP Standard Collection .. 2–20
Standard Collection Properties... 2–20
Standard Collection Methods.. 2–20
Detailed Description ... 2–21

SAP Named Collection..2–22

SAP Data Object.. 2–23

Safe Arrays and Values... 2–24

Using OCX Controls SAP AG

Summary of OCX Controls

2–2 May 1997

Font Objects.. 2–24

Data Types .. 2–25

SAP AG Using OCX Controls

Summary of OCX Controls

May 1997 2–3

Summary of OCX Controls
External applications access R/3 by making remote calls to R/3 functions. The SAP
Assistant and the OCX components use RFC (the Remote Function Call API) to execute
calls to the R/3 System. The SAP Assistant and OCX controls provide objects that allow
the programmer to manage function call details from desktop applications.

The following are the available SAP OCX controls. Two of these, (the Function and
Transaction controls), are available from SAP as separate component DLLs.

• The Function control provides objects (functions collection, function, logon, tables,
table, exports, export, imports, import, parameter types, and so on) to log on to the
R/3 System, manage the connection, request functionality, receive back data and
direct data streams to client programs or the user interface. (See The Function
Control.)

• The Logon control provides a connection object that makes it possible to log onto
R/3. (See The Logon control)

• The Transaction control provides screen and field object management so that a user
can remotely call R/3 transactions or use them in programs. (See The Transaction
Control.)

Note that the Transaction control only allows transaction calls in batch-input mode.
That is, the external program can send input field values to an R/3 screen, but output
field values are not returned. For complete transaction execution, with data transfer in
both directions, use the BAPI Component.

• The Table View control allows an internal table from R/3’s RFC library to be
viewed on screen like a spreadsheet. (See The Table View control)

• The Table Factory control works with the Function control to manage tables
attached to Function objects. In addition, the Table Factory encapsulates Table
objects for easier access by the client application. (See The Table Factory control)

• The Table Tree control makes visible those tables that contain hierarchically
structured data (trees of parent nodes and their children). Table Trees allow the
programmer and user to manage tables containing directory trees. (See The Table
Tree Control .

• A Server Object Wrapper that provides compatibility for OLE automation
programs written for client applications of previous R/3 versions.

All of these objects are invoked via OLE Automation, and they in turn communicate with
R/3. The objects manage all the necessary details: using RFC libraries, packing tables,
making calls, receiving responses and displaying information. The following diagram
illustrates how the controls and SAP Assistant components perform these functions:

Using OCX Controls SAP AG

Possible Uses for OCX Controls

2–4 May 1997

Function
OCX

Function
OCX

R/3
Automation
Assistant

Table-
view
OCX

Transaction

OCX

Tree-
view
OCX

Table
OCX

R/3
System

Graphical
User

Interface

Queries

Replies

Queries

Replies

Logon
OCX

Requests Connection

Makes
Connection

Returns
Connection

Uses

Makes
Remote
Function

Calls

Uses

Responds to Remote
Function Calls

Work Together to
Display

Interprets

Server
Component

Wrapper

OCX Interoperation Details

Possible Uses for OCX Controls

Here are some examples of how programs can use OCX controls.

SAP AG Using OCX Controls

Summary of Programming Tasks

May 1997 2–5

Program Possible Use Server Client

MS Excel 5 Upload Planning
Data, Download
Report Data

√ √

MS Project 4 Control
Purchasing
Schedules

√ √

Visio View Business
Process Flows

√ √

MS Word 6 Use Spellcheck √

Powerbuilder MS
Access 2 Borland
Delphi

Build Database
Front Ends, Use
Programming
Language of
Choice

√
√
√

Possible Applications of OCX Controls for R/3 RFCs

Summary of Programming Tasks
Your program’s overall goal is to call a function in the R/3 System, sending data as input
to the function and receiving data as return values. In the Function Control, sending and
return parameters are presented as further objects contained in the Function object.

Any application using SAP Automation must perform the tasks listed below. Perform the
first three steps for both methods of remote call access:

1. Create the base-object; i.e. the component itself.
2. Supply connection and logon information.
3. Open a connection to the R/3 System and log the user on.

If you are accessing remote function calls non-dynamically:
4. Request a Function object for the R/3 function you want.
5. Set the Export and Table parameter values.
6. Make the remote call.
7. Get the return values from the Import and Tables.

For accessing remote functions dynamically (in other words, you do not add the function
to the functions collection, but write the function call like a native (local) VB function):

4. Create Table or Structure objects to place data into to pass data with the table
parameters or structure parameters.

5. Invoke the function from the functions collection object.
6. Parameters can be either simple variables or object variables.

Pass parameters to the named argument, for example:

Using OCX Controls SAP AG

Summary of Programming Tasks

2–6 May 1997

XFunc (X
1
: = 5, X

2
: = nVar, X

3
: = objVar)

where X
1
,

X

2
, and X

3
are the argument names in the function interface.

The following sections show how to program these tasks.

Example Application with the Function Control

In this example, we show an application that will use almost all the objects we discussed
and several of their properties and methods. The application gets a list of customers from
the R/3 System and prints attributesfor each customer (for example, name and ZIP-code).
The function interface is shown here:

RFC_CUSTOMER_GET IMPORT Name (NAME1)

IMPORT Customer-Number (KUNNR)

TABLES CUSTOMER_T (RFCKNA1)

This function takes selection criteria (name and customer number) and retrieves the
customers matching that description. Essentially, this function performs an SQL query:

select * from CUSTOMER_T where NAME1=Name
 and KUNNR=Customer Number

The table has the following structure, where all fields are of type RFC_CHAR:

Customer Table Structure:

KUNNR

ANRED

NAME1

PFACH

STRAS

PSTLZ

ORT01

TELF1

TELFX

The following example accesses the remote function by adding Function objects to the
Functions collection object:

Declare object variables.
Dim Functions as Object
Dim GetCustomers as Object
Dim Customers as Object

Create the Function control (that is, the high-level Functions collection).
set Functions = CreateObject (“SAP.Functions”)

SAP AG Using OCX Controls

Variation using the Dynamic Calling Convention

May 1997 2–7

Indicate what R/3 System you want to log on to.
Functions.Connection.Destination = “B20”

Set the rest of Connection object values.
......

Log on to the R/3 System.
Functions.Connection.Logon
if Functions.Connection.Logon (0, True) <> True then

MsgBox “Cannot logon!”
End If

Retrieve the Function object. The Connection object must have been set up first before
any Function objects can be created.
set GetCustomers = Functions.Add(“RFC_CUSTOMER_GET”)

Set the export parameters., Here, get all customers whose names start with J.
GetCustomers. Exports("NAME1") = “J*”
GetCustomers.Exports("KUNNR") = "*"

Call the function. If the result is not true, then display a message.
If GetCustomers.Call = True then

There are two ways of accessing the table:

Set Customers = GetCustomers.Tables(1)
set Customers = GetCustomers.Tables(“Customers”)

Print Customers (Customers.rowcount, “KUNNR”)
Print Customers (Customers.rowcount, “NAME1”)

Else

MsgBox “Call Failed! error: “ + GetCustomers.Exception

End If

Functions.Connection.Logoff

A variation of this code can be used for dynamic calling. See Variation using the
Dynamic Calling Convention .

Variation using the Dynamic Calling Convention
The dynamic calling technique looks different from a non-dynamic call, but performs the
same function. The code is the same as that shown in Example Application with the
Function Control , until the logon process is complete. Then, the following line is used:

Call the function with parameter “NAME1”

Functions.RFC_CUSTOMER_GET (Exception, NAME1:= “J*”,
KUNNR:="*", CUSTOMER_T:=Customers)

The customers table retrieved by the function has been copied into Customers variable.
This way of calling makes the code a little easier to read, but takes slightly more time to
process.

Using OCX Controls SAP AG

Creating the Base-level Control

2–8 May 1997

Creating the Base-level Control
Controls are usually made up of collections of objects. For example, the Function control
contains Function objects, and the Transaction control contains Transaction objects. The
highest (base) level of a control is either an actual collection object (like the Functions
collection object) or a single control object (like the Table Factory object).

Controls also maintain some properties or objects common to all their sub-objects.
Examples are the R/3 Connection (an object shared by all Functions or Transactions in a
collection) or the Count property (the number of objects in a collection).

To create the base-level control, you use the CreateObject function and a fixed request
string. This string specifies the kind of control (i.e. “SAP.TableFactory.1”) and causes
creation of the relevant base-level object. For example:

transactionsOCX = CreateObject(“SAP.Transactions”)

For the SAP OCX controls, the required fixed strings are:

CreateObject String

OCX control Highest (base-level) object Fixed String

Function control Functions collection object “SAP.Functions”

Transaction control Transactions collection object “SAP.Transactions”

Logon control Logon object “SAP.LogonControl”

Table Factory control Table Factory object “SAP.TableFactory”

Table View control Table View object “SAP.TableViewControl”

Table Tree control Table Tree object “SAP.TableTreeControl”

For more information, see SAP Control Base Classes .

Connecting to the R/3 System
The Connection object is a property of the both the Function and the Transaction
controls. A Connection object is created automatically when you request the relevant
collection for either the Function or Transaction control. The Logon component creates
connections. If you have a Connection object obtained from another control or directly
from the Logon OCX, you can set it in the Function or Transaction control.

The Connection object’s Logon method establishes the connection to the R/3 System.
This method has a parameter that can suppress the dialog-box when the user logs in. This
parameter allows you to automatically log the user into a fixed account or provide your
own logon dialogs.

To establish a connection, you must call the Logon method for your Connection object.
See Using the Logon Control to Connect to R/3 .

SAP AG Using OCX Controls

Using the Logon Control to Connect to R/3

May 1997 2–9

Using the Logon Control to Connect to R/3
Most components deal directly with R/3 and therefore need a connection to the
application server. The basic steps needed to get a connection include creating a Logon
object and then calling NewConnection method on that object. The result of this call is
the connection object. To log on to the R/3 System you invoke the Logon method. The
example code brings up the window shown:

 ‘ Create the Control.
Dim LogonControl As Object
set LogonControl = CreateObject (“SAP.LogonControl.1”)

‘ Create the connection.
Dim conn As Object
set conn = LogonControl.NewConnection

‘ Log on.
if conn.Logon (0, True) <> True then

MsgBox “Cannot log on!”
End If

You can set parameters for the logon process such as username and password. Consult
the <LOGON control SECTION> for details. Depending on the parameters you set in the
Logon control, one or two dialog boxes will be displayed that ask for the input needed to
make the connection. One of these is:

Using OCX Controls SAP AG

Using the Function Control

2–10 May 1997

Using the Function Control
After creating the Function control, you have to tell it about its connection to the R/3
System. Then you can start adding Function objects and calling RFCs. The Function
control base-class is the Functions collection object. You can add and remove functions
by using the Add and Remove methods.

Once a function has been created (added), it can be set up with parameter values and then
called. The Call method of the Function object returns a boolean value that tells you
whether the call executed with no problems. If there were problems, use the Exception
property of the Function object to get more information on the error. If you have
problems calling RFCs, consult the LogFileName and LogLevel properties of the
Function control’s base-class (the Functions collection object). These properties provide
more information for trouble-shooting.

The following code creates the Function object, sets a connection, sets parameters, and
calls the function.

‘ Create the component.
Dim functions As Object
Set functions = CreateObject (“SAP.Functions”)

‘ Set the connection.
Set functions.Connection = conn

‘ Add (retrieve) function from R/3.
func = Functions.Add (“RFC_CUSTOMER_GET”)

‘ Set a parameter.
func.Exports (“NAME1”) = “ACME Steel”

‘ Call the function.
If Func.Call <> True then

MsgBox “Call Failed. Exception “ + func.exception
End If

For more information, see:

SAP AG Using OCX Controls

Requesting Functions

May 1997 2–11

Requesting Functions
You must get a Functions collection object in order to access all other objects. Each
Functions collection contains one Connection object. If your application needs to access
data from multiple R/3 Systems, you must create a separate Function control for each
system. Each of these components will have its own Connection object.

Adding a Function
Both ABAP/4 function modules and their separate parameters are represented by the
object types Function, Parameter, Structure, and Table. You must get the Function object
explicitly in order to be able to access the other object types. The Function control adds
each function requested to the Functions collection.

Setting Parameter Values
Before calling an RFC function, you must set export and table parameter values.
Depending upon the ABAP/4 function definition, you may not have to use all the formal
variables specified in the interface. If you don’t specify a value for a parameter, it is not
sent with the call.

• To set values for import/export parameters defined as simple fields, use the
Parameter object and its property functions.

• For import/export parameters defined as structures, use the Structure object and its
properties to access individual fields.

• To set values for table parameters, use the Table, Rows and Row objects (and their
properties) to access individual table rows and fields.

If the control cannot convert between ABAP/4 data types and your variable data types, it
sends you an error message as soon as you fill the parameter.

See Using Parameter and Structure Objects for information on how to handle export and
import parameters.

See Viewing Table Objects for information on how to handle table parameters.

Handling parameter objects

RFC objects “depend” on the parent object that contains them. If you assign the object to
an object variable, the variable shares the object with the containing parent object. For
example, after the statement:

Set ObjVar = FunctionsOCX (“RFC_PING”)

ObjVar and FunctionsOCX (“RFC_PING”) refer to (that is, point to) the same object.
This is important because if you remove the object (or its containing parent) from the
relevant collection, you simultaneously invalidate the contents of the object variable. (In
the example, if you remove Funct1 from its Functions collection, the variable ObjVar

becomes invalid.)

There are two exceptions to this rule:

Using OCX Controls SAP AG

Viewing Table Objects

2–12 May 1997

• Table objects that have been detached (“unloaded”) from their containing Function
objects, making the Table control the Table’s new parent. (See Viewing Table
Objects .)

• Collection objects that have been assigned to object variables.

Both of these become independent of the containing Function object. By contrast, you
cannot detach Export/Import objects in this way. In addition, Table objects that are
simply assigned (rather than unloaded) to a variable also remain shared.

Table and Structure objects are always independent of the Function objects when a
remote function is called directly because there is no Function object created externally.

Viewing Table Objects
To set values for table parameters:

• To access fields in a row, use the Table.Item and Row.Value properties

• To process table rows as units, use the Table.Rows property to loop through all rows,
or the Table.Item property for direct access to a single row.

The Row object is used to retrieve column information in the Table object. Do not
attempt to use the Structure object methods on table rows; the Structure object is only for
use with objects from the Exports and Imports collections.

Remember that if you assign a row to a object variable, and then delete either the Table
object from the Tables collection object, or the row from the table (using the any of the
RemoveRow, DeleteTable, or FreeTable methods), you invalidate the contents of the
target object variable.

You can avoid this problem by detaching Table objects from the Function object. The
table component provides the methods to unload and set for detaching and reattaching
tables. A Table object unloaded to an object variable is no longer shared with the
Function object. However, Table objects that are simply assigned (rather than unloaded)
to a variable remain shared.

Using Parameter and Structure Objects
When you want to access fields in an export/import parameter defined as a structure, use
the following:

1. Assign the parameter to an object variable:

set StructObj = MyFunct.Exports(“Employee_Struct”) OR
Set FieldObj = MyFunct.Exports(“Company_Number”)

2. Use either Parameter or Structure functions on the variable, depending on whether
the parameter is defined as a field or structure.

StructObj.Value(“Name”) = “Smith” OR
FieldObj.Value = “1234”

Structure objects are provided to perform operations on export and import parameters
only. Do not attempt to use the methods and properties for this object type with table
rows.

SAP AG Using OCX Controls

Using Named–Argument Calling Conventions

May 1997 2–13

Structure and Parameter objects are fundamentally different from the other object types.
They are not maintained in their own collection lists, and do not occur in any other object
type as a property or method. As a result, expressions of the form:

MyFunction.Structure.Value(“field-name”) OR
MyFunction.Parameter.Value

are not valid and result in runtime errors.

To get information on a parameter’s structure definition, use the online Assistant.

Using Named–Argument Calling Conventions
The named-argument calling conventions do not have qualifiers to distinguish the
importing parameters from the exporting parameters like the calling conventions used in
the ABAP language. You must be aware which parameter is the importing parameter
and which parameter is the exporting parameter. From a caller’s point of view, you can
use either variables or constants for exporting parameters. However, you can only use
variables for importing parameters so that the variables can store the returned data.

From the caller’s point of view, if the exporting parameter is a structure and you want to
pass data to this parameter, you must first create a Structure object using the
CreateStructure method of the Functions collection and fill data in the Structure object. If
the importing parameter is a structure, you can pass any variable to receive the returned
Structure object. There is no need to create Structure objects yourself.

If you only want to retrieve data in table parameters, you can use any variable for the table
parameters. There is no need to create Table objects yourself. The remote Function object will
create the Table objects and store them into your variables. If you want to pass data to the table
parameters, you must first create a Table object in the table component and fill data to the able
object. Then you can pass the table object into the table parameter.

The following example illustrates these two scenarios.

Example

For the remote function interface:

xFunc
 Importing IP LIKE TP-IP
 SIP LIKE SX STRUCTURE SX
 Exporting EP LIKE TP-EP
 SEP LIKE SY STRUCTURE SY
 Tables TP STRUCTURESZ

In the first scenario, when you only want to retrieve data, the following VBA code
illustrates the calling statement:

Call the xFunc remote function.

R3.xFunc IP:= 1, SEP:= objStruct, EP:= nVar, TP:=objTable

where objStruct, nVar, and objTable can be uninitialized.

In the second scenario, when you want to pass data to the table parameter and the
exporting parameter with the structure type, the following VBA code illustrates the
calling statement:

Using OCX Controls SAP AG

Using the Table Factory Control

2–14 May 1997

Create a Structure object with structure type “SX”.
set objMyStruct = R3.CreateStructure(“SX”)

Create a Table object with table structure type “SZ”.
set objTable = R3.CreateTable(“SZ”)

Fill in data for objMyStruct and objTable here.
...

Call the xFunc remote function.
R3.xFunc IP:=1, SIP:= objMyStruct, EP:= nVar, SEP:= objStruct,
TP:=objTable

Using the Table Factory Control
Each Function object owns a collection of R/3 tables. The Table Factory control gives
you easy access to these SAP internal tables. If used from within the Function control,
Table Factory is invisible to the user. The Table Factory control provides a Tables
collection object that is used as a property in the Function object. When you access the
function’s Tables collection, Visual Basic gets a “dispatch pointer” to the Table
control. In the previous example, the RFC_CUSTOMER_GET call returns an internal
table with the name “CUSTOMER_T”. To get the last row of that table and display the
ZIP code, for example, use code as shown:

‘ Get table.
Set customers = func.Tables (“CUSTOMER_T”)

‘ Get zipcode of last row.
zipCode = customers (customers.RowCount, "PSTLZ")

Using the Transaction Control
Most of the day, when communicating with users, the R/3 System executes transactions.
These are made up of a sequence of screens that contain fields. The online user fills in the
fields, presses a button and the next screen appears. The Transaction control allows you
to programmatically fill in these fields and proceed through the screens. No GUI is
displayed.

You create a Transactions collection object just like a Functions collection object:

Set transOCX = CreateObject("SAP.Transactions.1")

Add a Transaction object:

Set trans = transOCX.Add("SE11", "DOMAIN")

Then you add screens and fields:

 Set Screen = trans.Screens.Add
 Screen.Program = "SAPMSRD0"
 Screen.Number = "0100"
 Set Fields = Screen.Fields
 Fields.Add "RSRD1-OBJNAME", "ZTST"

SAP AG Using OCX Controls

Using the Table View Control

May 1997 2–15

 Fields.Add "RSRD1-DOMA", "X"
 Fields.Add "BDC_OKCODE", "=ADD"

 Set Screen = trans.Screens.Add
 Screen.Program = "SAPMSD01"
 Screen.Number = "0100"
 Set Fields = Screen.Fields

 Text = "Testing at " + Str$(Hour(Now)) + ":" + Str$(Minute(Now))
 Fields.Add "DD01V-DDTEXT", Text
 Fields.Add "DD01V-DATATYPE", "CHAR"
 Fields.Add "DD01V-LENG", "10"
 Fields.Add "BDC_OKCODE", "/11"

 Set Screen = trans.Screens.Add
 Screen.Program = "SAPLSTRW"
 Screen.Number = "0100"
 Screen.Fields.Add "BDC_OKCODE", "/9"

Don’t forget to set the Connection! Here we’ll just reuse the one from above:

set transOCX.Connection = conn

Finally we call the transaction:

if trans.Call <> true then
MsgBox “Call failed… ”

End If

‘ Display the message generated.
MsgBox "Transaction message: " + trans.Message.Value("MSGTX")

Remember that with the Transaction control, you are always calling the transaction in
batch-input mode. That is, the external program can send input field values to an R/3
screen, but output field values are not returned. For complete transaction execution, with
data transfer in both directions, use the BAPI Component.

Using the Table View Control
The Table View control provides views of tables that have been retrieved from R/3. It
also allows editing of the data shown in the view and automatically gets the table
contents updated. You get access to a Table View control by using a variable. Visual
Basic (Version >= 4.0) allows this most easily.

To bind a table view to a table, you must get the table (e.g. customers), the view (e.g.
SAPTableView), and then notify the table that it now has a view. For example:

‘ Establish view-table connection.
Customers.Views.Add SAPTableView.Object
Customers.Refresh

A complete recipe follows for displaying a table from Visual Basic. The first step is to
drop a table view onto a form and set its name.

Using OCX Controls SAP AG

Using the Table View Control

2–16 May 1997

Then, after you have retrieved the table via an RFC, you connect it to the view. In Visual
Basic, create a form, then select SAP Generic Table View Control in the Custom Control
dialog.

An icon will be placed in the toolbox . Click on this icon, and then create the
control in the area on the form where you want the table data displayed. Change the name
of the new object (in the Properties window) to SAPTableView. (The name is optional,
as long as you use the same name in the script.)

Create a text-entry field, and name it (for example) NameInput. Then add a button and
add the following code to it (the click callback function):

Private Sub Command1_Click()

‘ Create function component.
Dim fns As Object
Set fns = CreateObject("SAP.Functions.1")
fns.logfilename = "c:\tmp\table+viewlog.txt"
fns.loglevel = 8

Dim conn As Object
Set conn = fns.Connection
conn.Client = "000"
conn.Language = "E"
conn.tracelevel = 6

SAP AG Using OCX Controls

Using the Table View Control

May 1997 2–17

if conn.logon(0, 0) <> True then
MsgBox “Could not logon!”

End If

Dim Customers, Customer As Object
Dim Result As Boolean

‘ Get the name to display from NameInput and call function …
Result = fns.RFC_CUSTOMER_GET(Exception, NAME1:=NameInput, KUNNR:="*",
CUSTOMER_T:=Customers)

If Result <> True Then
 MsgBox (“Call error: “ + Exception)
 Exit Sub
Else
 ’ try to display table view.
 Customers.views.Add TheTableView.object
 Customers.Refresh
 MsgBox "Got " + Str$(Customers.RowCount) + " rows."
End If

Set fns = Nothing
Set conn = Nothing
End Sub

The resulting form (after the script shown in this section has run) should resemble the
following:

Using OCX Controls SAP AG

Using Collection Objects

2–18 May 1997

Using Collection Objects
The SAP Assistant defines several collection object types. Collection objects gather all
objects of a given type into a list. (For example, all Function objects for a given control
are gathered into the Functions collection object representing that control.)

A collection object provides list–oriented functions for accessing list objects, adding and
removing from the list, looping through the list, and so on.

Example

To loop through a Rows collection object:

For Each Customer in Customers.Rows
print Customer (“NAME”)

Next Customer

Performance and Debugging Tips
The following sections describe techniques you can use to improve the performance and
reduce debugging time for your applications.

Avoiding Unnecessary Object Creation

Application objects and all collection objects are created dynamically when your code
makes a reference to one of them. These objects are temporary and are destroyed when
no more references to them exist. As a result, multiple accesses to one of these objects
can hurt performance. To avoid this problem, assign the object to an object variable of
your own and then make the accesses. For example, you can improve the following code:

 GetFunct.Exports(“P1”)
 GetFunct.Exports(“P2”)
 GetFunct.Exports(“P3”)
 GetFunct.Exports(“P4”)
 GetFunct.Exports(“P5”)

by changing it to:

 set MyExports = GetFunct.Exports
 MyExports(“P1”)
 MyExports(“P2”)
 MyExports(“P3”)
 MyExports(“P4”)
 MyExports(“P5”)

In the first code example, five temporary collection objects are created, each destroyed
after a single statement. In the second, only one temporary object is created. (This object
is not destroyed after the first statement, because the other statements still refer to it.)

SAP AG Using OCX Controls

SAP Control Base Classes

May 1997 2–19

Tracing RFC Calls

You can request a trace of connection activity as the RFC call executes. The TraceLevel
property in the Connection object lets you specify tracing. Possible values are 0 (tracing
not requested) and 1 (tracing requested).

The activity information is logged in a file “RFC<random number>.TRC” located in the
active default directory.

The Functions collection and Transactions collection objects also provide logging
functionality with the LogFileName and LogLevel properties.

Note on Embedded Property Calls

Bear in mind while coding your application that client languages may execute certain
kinds of statements differently. Of particular importance is whether or not your language
performs cascaded evaluation. An example of cascaded evaluation is the evaluation of
statements like:

MyFunct.Exports(“P1”).Value(“F1”)

This statement requires the language to first call the Exports property for MyFunct, and
when a Structure object is returned, call the Value property on the Structure object.

Some languages do not perform full evaluation of statements like this. They evaluate the
first call (the Exports property), but do not evaluate the returned value (a Parameter or
Structure object) to call the next property (Value method) on it. As a result, you get the
wrong object returned, and eventually a runtime error.

The Excel macro language executes the above statement correctly, while Visual Basic 3.0
does not. However, almost all interpreters fail to evaluate statements correctly when a
default function is left implicit:

GetFunct.Exports(“P1”)(“F1”)

Note on Default Property Calls

Some languages do not evaluate the default value property. In this case, the default value
property must be explicitly specified:

MyFunct.Exports(“P1”) ‘ Does not work.’
MyFunct.Exports.Item (“P1”) ‘ OK’

 SAP Control Base Classes
The following reference topics on base classes are available:

SAP Standard Collection

SAP Named Collection

Using Collection Objects

SAP Data Object

Using OCX Controls SAP AG

SAP Standard Collection

2–20 May 1997

Safe Arrays and Values

Font Objects

Data Types

 SAP Standard Collection
All active OLE controls containing collections within an SAP System are implemented
according to common conventions. As long as a collection is not explicitly declared as a
non-standard collection, the following description applies to the collection. Not all
properties and methods mentioned below are available with every collection.

The lower bound index for all collections is 1.

For hints on using collection objects, see Using Collection Objects .

Standard Collection Properties

Name Parameter Type Description

Count void Long Returns the number of objects stored in the
collection.

Item Variant vaIndex Objec
t

Returns an object according to vaIndex. Item is
always the default property.

Standard Collection Methods

Na
me

Par
am
eter

R
et
u
r
n
T
y
p
e

Description

Ad
d

Obj
ect
dep
end
ent

O
b
je
ct

Adds a new object and
returns the new object.

Ins
ert

Var
iant
vaI
nde
x

Obj

O
b
je
ct

Inserts a new object at
position vaIndex and
returns the new object.

SAP AG Using OCX Controls

SAP Standard Collection

May 1997 2–21

ect
dep
end
ent

Re
mo
ve

Var
iant
vaI
nde
x

B
o
o
le
a
n

Removes the object at
position vaIndex.

Re
mo
ve
All

voi
d

B
o
o
le
a
n

Removes all objects
from the collection.

Un
Loa
d

Var
iant
vaI
nde
x

O
b
je
ct

Unloads the object at
position vaIndex.

Detailed Description

Object Item(Variant vaIndex)

Item returns an object from the collection. The parameter vaIndex identifies the position
of the object to be returned. The type of this parameter depends on the object. It may
describe the position where the object can be found, either as a simple integer value, or as
a string value (as described in Named Collections), or in any object-dependent variant
data type. In the following sections, the valid types are described for each collection.

Object Add (…)

The parameters for the Add method depend on the object. These parameters are used to
initialize the new object. Add always returns the new object.

Object Insert(Variant vaIndex,…)

The parameters for the Insert method depend on the object. These parameters are used to
initialize the new object. Insert always returns the new object. The first parameter of the
Insert methods always describes the position where to insert the new object (the new
object is always inserted in front of the position described by vaIndex). The type of this
parameter is object-dependent. It may describe the position where to insert the new
object, either as a simple integer value, or as a string value (as described in Named
Collections), or as an Object which is already part of the collection. Nevertheless, the
indexing parameter always has the same meaning as the indexing parameter of the default
property Item.

Using OCX Controls SAP AG

SAP Named Collection

2–22 May 1997

Boolean Remove(Variant vaIndex)

Removes an object from its collection. The parameter vaIndex identifies the position of
the object to be returned. The type of this parameter depends on the object. It may
describe the position where to insert the new object, either as a simple integer value, or as
a string value (as described in Named Collections). Nevertheless, the indexing parameter
always has the same meaning as the indexing parameter of the default property Item.

Caution

When removing an object from the collection, the object becomes invalid. Any
further attempts to work on the object return an Invalid Object Exception. Use
UnLoad if the object should be removed from the collection for further use.

Object UnLoad(Variant vaIndex)

Unloads an object from its collection. The parameter vaIndex identifies the position of
the object to be returned. The type of this parameter depends on the object. It may
describe the position where to unload the object, either as a simple integer value, or as a
string value (as described in Named Collections). Nevertheless, the indexing parameter
always has the same meaning as the indexing parameter of the default property Item.

 SAP Named Collection
Named collections are derived from SAP Standard Collections. In addition, a named
collection may always work with a string as indexing parameter for methods like Item,
Insert, Remove and UnLoad. Objects within a named collection always have a Name
property which stores the indexing name. The name describing an object in a named
collection need not to be unique. If a name is used frequently, Item, Insert, Remove and
UnLoad always use the first object with the given name.

Further features of named collections are dynamic properties, created as a result of the
objects’ names. Instead of invoking the Item property, an object may also be returned if
the name of the object is used as property.

For further hints on using collection objects, see Using Collection Objects .

Example
Dim oObj as Object

‘ Add a new empty object

Set oObj = NamedCollectionObject.Add ()

‘ Assign name

oObj.Name = “ItemB”

‘ Add object an pass name as parameter.

Set oObj = NamedCollectionObject.Add (“ItemC”)

‘ Insert object in prior to object “ItemB”

SAP AG Using OCX Controls

SAP Data Object

May 1997 2–23

Set oObj = NamedCollectionObject.Insert (“ItemB”,“ItemA”)

‘ Accessing the object

‘ Retrieve second object through index

Set oObj = NamedCollectionObject.Item(2)

‘ Retrieve second object through name

Set oObj = NamedCollectionObje ct.Item(“ItemB”)

‘ Retrieve second object through dynamic property

Set oObj = NamedCollectionObject.ItemB

 SAP Data Object
The SAP Data Object is a special object for purposes of data transport. This object is
used in drag and drop and clipboard operations. The SAP Data Object implements an
automation and an IDataObject interface. The IDataObject interface is a standard OLE
interface for data object manipulation. The automation interface displays the following
methods:

Name Parameters Return
Type

Description

GetData Long

Variant

cfFormat

vaData

void Retrieves data
from the data
object in the
specified format

SetData Long

Variant

cfFormat

vaData

void Stores data in the
data object in the
specified format

IsFormatAvailable Long cfFormat Boolean Returns TRUE if
the data object
contains data in the
specified format

Caution

SetData may specify a format which is not initially cached in the data object. Since
the data object does not interpret the data in any way, the data may be of any
clipboard format. The variant data type must be any data type which is transportable
to other processes. Therefore, object may not be stored in the data object.

Valid formats are: char, short, long, String, Date, Time, Boolean and safe arrays of these
types.

Using OCX Controls SAP AG

Safe Arrays and Values

2–24 May 1997

Example
Sub DragSourceFill(DataObject As Object)

Dim cfFormat As Long

Dim Data As String

cfFormat = RegisterClipboardFormat(“MyClipFormat”);

Data = “This is my personal string”

DataObject.SetData(cfFormat,Data)

Sub End

Sub Drop(DataObject As Object)

Dim cfFormat As Long

Dim Data As String

cfFormat = RegisterClipboardFormat(“MyClipFormat”);

if DataObject.IsFormatAvailable(cfFormat) then

DataObject.GetData(cfFormat,Data)

MsgBox(Data)

end if

Sub End

 Safe Arrays and Values
If an SAP object returns data as a safe array, the object always has the property Data.
This property usually returns a two-dimensional safe array with a lower bound index of 1
for each dimension. An example of a Data property would be the entire content of a table
or the entire content of a row or column in a table. Single date like the content of a cell in
a table is always returned as a Variant. The corresponding property is always called
Value. If an object implements a Value property, this property is the default property.

 Font Objects
Font Properties:

Table Caption

Name Type

Name String

Size Currency

SAP AG Using OCX Controls

Data Types

May 1997 2–25

Bold Boolean

Italic Boolean

Underline Boolean

StrikeThrough Boolean

Weight Short

CharSet Short

For more information, see the VBA help on font objects.

 Data Types
The following are the available data types:

Table Caption

Types in Help File VBA Data Type C++ Data Type

Char Byte (By Val) unsigned char

Short Integer (By Val) short

Long Long (By Val) long

String String (By Val) BSTR

Boolean Bool (By Val) VT_BOOL

Object Object IDispatch *

Short* Integer short*

Long* Long long*

String* String BSTR*

Boolean* Bool VT_BOOL*

void Method does not return a
value

void

Array of type (1, n) of Type VT_ARRAY | VT_Type

