WV SAP AG

Using OCX Controls

Overview

Chapter 2: Using OCX Controls

Overview

The following sections provide guidance on using the SAP Automation Server objects.
All code examples are provided in Visual Basic 4.0.

Contents
Summary 0f OCX CONIOIS coeeveiiiiiii i 2-3
Possible Uses for OCX CONMIOIScoiuiiiiiieeiiiiieei et 2-4
Summary of Programming TASKScoevuiiiiiiiiiieee et e e 2-5
Variation using the Dynamic Calling Conventionccccoevvvvviiviiiiiiiiiinn e 2-7
Creating the Base-1evel CONtIOl...........coooiiiiiiiiiiiiieie e e e 2-8
Connecting to the RIS SYStEM.....uuuiiiii e e 2-8
Using the Logon Control to ConNectto R/3vvuiiiiiiiiiiiiiieeecee e, 2-9
Using the FUNCLion CoNtrol............ouuiiiiiii e e e e 2-10
[y To WIS il o [U1 Uod 1 o] F= 3 2-11
7Y [0 [T Yo =W U [o] 1 o] o 2-11
Setting Parameter ValUESuuiiiiiiii i e e e 2-11
Viewing Table ODJECES ..o e e 2-12
Using Parameter and Structure ODJECES..........uviiiiieiii e, 2-12
Using Named—Argument Calling CONVENLIONS........ccuiiiiieeiiiiiiiiiiiiieeeeee e e e eeiiens 2-13
Using the Table Factory COoNtrol...........ooooiiiiiiiiiiiieeeee e 2-14
Using the Transaction CONLIOl...........ouiiiieeieiiiii e 2-14
Using the Table VIew CONIrolceviiiiiiiiiiiiie e 2-15
UsiNg Collection ODJECLS........cccuiiiiiiiiiiiiiiie e e e e e 2-18
Performance and Debugging TiPS ...oooooueiiiiiiiiiiiiiiieiee e e e e e e e e e 2-18
SAP CONLrol BASE CIASSESeviiiiiiiiiiiee ettt e ettt e e e e ainnes 2-19
SAP Standard COllECHONcoouuiiiiie it 2-20
Standard ColleCtion PropertieS........uuuueeeiiiiiiiiieeee e e e e 2-20
Standard Collection Methods............ooiiiiiiiiiiiiiie e 2-20
D=y e= Y L=l B T= T o o] o] (o] o WP 2-21
SAP Named CollECTION.......uuiiiiieiiie et e e 2-22
SAP Data ODjJECT....euiiiiiiiiiiiiieeeee 2-23
Safe Arrays and VAIUES..........uuuuiiiiiiiiiiiiiiiiciee e e e 2-24

May 1997

2-1

Using OCX Controls SAPAG IV

Summary of OCX Controls

o] 0 A oY =T o3 £ 2-24
I F= = N 1Y/ 01 2-25

2-2 May 1997

BV SAP AG Using OCX Controls

Summary of OCX Controls

Summary of OCX Controls

External applications access R/3 by making remote callsto R/3 functions. The SAP
Assistant and the OCX components use RFC (the Remote Function Call API) to execute
callsto the R/3 System. The SAP Assistant and OCX controls provide objects that allow
the programmer to manage function call details from desktop applications.

The following are the available SAP OCX controls. Two of these, (the Function and
Transaction controls), are available from SAP as separate component DLLSs.

» TheFunction control provides objects (functions collection, function, logon, tables,
table, exports, export, imports, import, parameter types, and so on) to log on to the
R/3 System, manage the connection, request functionality, receive back data and
direct data streamsto client programs or the user interface. (See The Function
Contral.)

» TheLogon control provides aconnection object that makes it possible to log onto
R/3. (See The Logon contral)

» The Transaction control provides screen and field object management so that a user
can remotely call R/3 transactions or use them in programs. (See The Transaction
Controal.)

Note that the Transaction control only allows transaction calls in batch-input mode.
That is, the external program can send input field values to an R/3 screen, but output
field values are not returned. For complete transaction execution, with datatransfer in
both directions, use the BAPI Component.

» TheTableView control allows an internal table from R/3's RFC library to be
viewed on screen like a spreadsheet. [Bedlable View control)

» TheTableFactory control works with the Function control to manage tables
attached to Function objects. In addition, the Table Factory encapsulates Table
objects for easier access by the client application. TBe&able Factory control)

» TheTable Treecontrol makes visible those tables that contain hierarchically
structured data (trees of parent nodes and their children). Table Trees allow the
programmer and user to manage tables containing directory tree$héSeble
Tree Control .

* A Server Object Wrapper that provides compatibility for OLE automation
programs written for client applications of previous R/3 versions.

All of these objects are invoked via OLE Automation, and they in turn communicate with
R/3. The objects manage all the necessary details: using RFC libraries, packing tables,
making calls, receiving responses and displaying information. The following diagram
illustrates how the controls and SAP Assistant components perform these functions:

May 1997 2-3

Using OCX Controls SAPAG IV

Possible Uses for OCX Controls

Graphical
User
Interface

!
R/3
Automation

Assistant

Queries Server Queries

Component
Wrapper

Replies Replies

Function
OCX

Requests Connection /

Makes
Remote
Function
Calls

Makes Returns
Connection / connection
R/3
System
Responds to Remote

Function Calls

OCX Interoperation Details

Possible Uses for OCX Controls

Here are some examples of how programs can use OCX controls.

2-4 May 1997

WV SAP AG

Using OCX Controls

Summary of Programming Tasks

Program Possible Use Server Client
MSExcel 5 Upload Planning v v
Data, Download
Report Data
MS Project 4 Control v v
Purchasing
Schedules
Visio View Business v v

Process Flows

MS Word 6 Use Spellcheck v

Delphi

Powerbuilder MS Build Database v
Access2 Borland Front Ends, Use V
Programming v
Language of
Choice

Summ

Possible Applications of OCX Controlsfor R/3 RFCs

ary of Programming Tasks

Your program’s overall goal is to call a function in the R/3 System, sending data as input
to the function and receiving data as return values. In the Function Control, sending and
return parameters are presented as further objects contained in the Function object.

Any application using SAP Automation must perform the tasks listed below. Perform the
first three steps for both methods of remote call access:

1. Create the base-object; i.e. the component itself.
2. Supply connection and logon information.
3. Open a connection to the R/3 System and log the user on.

If you are accessing remote function calb&-dynamically:
4. Request a Function object for the R/3 function you want.
5. Set the Export and Table parameter values.
6. Make the remote call.
7. Get the return values from the Import and Tables.

For accessing remote functiothgnamically (in other words, you do not add the function
to the functions collection, but write the function call like a native (local) VB function):

4. Create Table or Structure objects to place data into to pass data with the table
parameters or structure parameters.

5. Invoke the function from the functions collection object.

6. Parameters can be either simple variables or object variables.
Pass parameters to the named argument, for example:

May 1997

2-5

Using OCX Controls SAPAG IV

Summary of Programming Tasks

XFunc (X:=5, X =nVar, X;: = objVar)
where X, X,, and X, are the argument names in the function interface.

The following sections show how to program these tasks.

Example Application with the Function Control

In this example, we show an application that will use ailmost all the objects we discussed

and several of their properties and methods. The application gets alist of customers from
the R/3 System and prints attributesfor each customer (for example, name and ZIP-code).
The function interface is shown here:

RFC_CUSTOMER_GET IMPORT Name (NAME1)
IMPORT Customer-Number (KUNNR)
TABLES CUSTOMER T (RFCKNA1)

This function takes selection criteria (name and customer number) and retrieves the
customers matching that description. Essentially, this function performs an SQL query:
sel ect * fronCUSTOMER T wher e NAME1=Name
and KUNNR=Customer Number

The table has the following structure, where all fields are of type RFC_CHAR:

Customer Table Structure:

KUNNR
ANRED
NAME1
PFACH
STRAS
PSTLZ
ORTO1
TELF1
TELEX

The following example accesses the remote function by adding Function objects to the
Functions collection object:

Declare object variables.

Di m Functions as (bj ect

Di m Get Custoners as Obj ect
Di m Custoners as (bj ect

Create the Function control (that is, the high-level Functions collection).
set Functions = CreateObject (“SAP.Functions”)

2-6

May 1997

BV SAP AG Using OCX Controls
Variation using the Dynamic Calling Convention

Indicate what R/3 System you want to log on to.
Functi ons. Connecti on. Desti nati on = “B20”

Set the rest of Connection object values.

Log on to the R/3 System.

Functi ons. Connecti on. Logon

i f Functions. Connection.Logon (0, True) <> True then
MsgBox “Cannot logon!”

End If

Retrieve the Function object. The Connection object must have been set up first before

any Function objects can be created.
set GetCustomers = Functions.Add(‘RFC_CUSTOMER_GET")

Set the export parameters., Here, get all customers whose names start with J.
GetCustomers. Exports("NAMEL") = “J*
Cet Cust omer s.Exports("KUNNR") = "*"

Call the function. If the result is not true, then display a message.
I f GetCustomers.Call = True then

There are two ways of accessing the table:

Get Cust oners. Tabl es(1)
Get Cust oner s. Tabl es(“Cust oner s”)

Set Customers
set Customers

Print Customers (Custoners.rowcount, “KUNNR’)
Print Customers (Custoners.rowcount, “NAVEL")

El se

MsgBox “Call Failed! error: * + GetCustoners. Exception
End |f
Functi ons. Connecti on. Logof f

A variation of this code can be used for dynamic calling.\&e&ation using the
Dynamic Calling Convention .

Variation using the Dynamic Calling Convention

The dynamic calling technique looks different from a non-dynamic call, but performs the
same function. The code is the same as that sho®xaimple Application with the
Function Control , until the logon process is complete. Then, the following line is used:

Call the function with parameter “NAMEL”

Functi ons. RFC_CUSTOVER GET (Exception, NAMEL: =“J*",
KUNNR: ="*" ~ CUSTOMER_T: =Cust oner s)

The customers table retrieved by the function has been copied into Customers variable.
This way of calling makes the code a little easier to read, but takes slightly more time to
process.

May 1997 2-7

Using OCX Controls SAPAG IV

Creating the Base-level Control

Creating the Base-level Control

Controls are usually made up of collections of objects. For example, the Function control
contains Function objects, and the Transaction control contains Transaction objects. The
highest (base) level of acontrol is either an actual collection object (like the Functions
collection object) or asingle control object (like the Table Factory object).

Controls also maintain some properties or objects common to all their sub-objects.
Examples are the R/3 Connection (an object shared by all Functions or Transactionsin a
collection) or the Count property (the number of objectsin a collection).

To create the base-level control, you use the CreateObject function and a fixed request
string. This string specifies the kind of control (i.e. “SAP.TableFactory.1”) and causes
creation of the relevant base-level object. For example:

transacti onsOCX = Creat eQbj ect (“SAP. Tr ansacti ons”)

For the SAP OCX controls, the required fixed strings are:

CreateObject String
OCX control Highest (base-level) object Fixed String
Function control Functions collection object SAP. Functi ond

Transaction control ~ Transactions collection objectSAP. Tr ansact i ond

Logon control Logon object SAP. LogonCont r ol”
Table Factory control Table Factory object SAP. Tabl eFact ory
Table View control Table View object SAP. Tabl eVi ewCont r of’
Table Tree control Table Tree object SAP. Tabl eTr eeCont r of’

For more information, se®AP Control Base Classes .

Connecting to the R/3 System

The Connection object is a property of the both the Function and the Transaction
controls. A Connection object is created automatically when you request the relevant
collection for either the Function or Transaction control. The Logon component creates
connections. If you have a Connection object obtained from another control or directly
from the Logon OCX, you can set it in the Function or Transaction control.

The Connection object’'s Logon method establishes the connection to the R/3 System.
This method has a parameter that can suppress the dialog-box when the user logs in. This
parameter allows you to automatically log the user into a fixed account or provide your
own logon dialogs.

To establish a connection, you must call the Logon method for your Connection object.
SeeUsing the Logon Control to Connect to R/3 .

2-8 May 1997

BV SAP AG Using OCX Controls
Using the Logon Control to Connect to R/3

Using the Logon Control to Connect to R/3

Most components deal directly with R/3 and therefore need a connection to the
application server. The basic steps heeded to get a connection include creating a Logon
object and then calling NewConnection method on that object. The result of thiscall is
the connection object. To log on to the R/3 System you invoke the Logon method. The
example code brings up the window shown:

‘ Create the Control.

Dim LogonControl As Object

set LogonControl = CreateObject (“SAP. LogonControl . 1)

‘ Create the connection.

Dim conn As Object
set conn = LogonControl.NewConnection

‘Log on.
if conn.Logon (0, True) <> True then

MsgBox “Cannot | og on!”
End |f

= SAP P43 Logon

Fif3 System | Group | Semver | Advanced |

#d, £20 [PUELIC)

+
o —
-

@9, BIN [C-Freigabe]

g consultant 30b

&3, C5P [PUBLIC)

0 n22

#8, K11 [PUBLIC]

4, MLP [PUELIC]

g FLP [hz2106. wdf. zap-ag. de]

|] Cancel

You can set parameters for the logon process such as username and password. Consult
the <LOGON control SECTION> for details. Depending on the parameters you set in the
Logon control, one or two dialog boxes will be displayed that ask for the input needed to
make the connection. One of these is:

May 1997 2-9

Using OCX Controls SAPAG IV
Using the Function Control

54P R{3 Logon

[zer Data | 0K I

User MRS |

Easswg[d | xxxxxxx |

Language

Using the Function Control

After creating the Function control, you have to tell it about its connection to the R/3
System. Then you can start adding Function objects and calling RFCs. The Function
control base-class is the Functions collection abject. Y ou can add and remove functions
by using the Add and Remove methods.

Once afunction has been created (added), it can be set up with parameter values and then

called. The Call method of the Function object returns a boolean value that tells you

whether the call executed with no problems. If there were problems, use the Exception

property of the Function object to get more information on the error. If you have

problems calling RFCs, consult the LogFileName and LogL evel properties of the

Function control’'s base-class (the Functions collection object). These properties provide
more information for trouble-shooting.

The following code creates the Function object, sets a connection, sets parameters, and
calls the function.

‘ Create the component.

Dim functions As Object

Set functions = CreateObject (“SAP. Funct i ong’)

‘ Set the connection.

Set functions.Connection = conn

* Add (retrieve) function from R/3.

func = Functions.Add (“RFC_CUSTOVER GET)

‘ Set a parameter.

func.Exports (“NAMEL") = “ACME Steel”
* Call the function.

If Func.Call <> True then

MsgBox “Cal | Failed. Exception® + func.exception
End If

For more information, see:

2-10 May 1997

BV SAP AG Using OCX Controls

Requesting Functions

Requesting Functions

Y ou must get a Functions collection object in order to access all other objects. Each
Functions collection contains one Connection object. If your application needs to access
data from multiple R/3 Systems, you must create a separate Function control for each
system. Each of these components will have its own Connection object.

Adding a Function

Both ABAP/4 function modules and their separate parameters are represented by the
object types Function, Parameter, Structure, and Table. Y ou must get the Function object
explicitly in order to be able to access the other object types. The Function control adds
each function requested to the Functions collection.

Setting Parameter Values

Before calling an RFC function, you must set export and table parameter values.

Depending upon the ABAP/4 function definition, you may not have to use al the formal

variables specified in the interface. If you don't specify a value for a parameter, it is not

sent with the call.

* To set values for import/export parameters defined as simple fields, use the
Parameter object and its property functions.

« For import/export parameters defined as structures, use the Structure object and its
properties to access individual fields.

« To set values for table parameters, use the Table, Rows and Row objects (and their
properties) to access individual table rows and fields.

If the control cannot convert between ABAP/4 data types and your variable data types, it
sends you an error message as soon as you fill the parameter.

SeeUsing Parameter and Structure Objects for information on how to handle export and
import parameters.

SeeViewing Table Objects for information on how to handle table parameters.

Handling parameter objects

RFC objects “depend” on the parent object that contains them. If you assign the object to
an object variable, the variable shares the object with the containing parent object. For
example, after the statement:

Set bj Var = Functi onsOCX (“RFC_PING")

bj Var and Funct i onsOCX (‘RFC_PING) refer to (that is, point to) the same abject.
Thisisimportant because if you remove the object (or its containing parent) from the
relevant collection, you simultaneously invalidate the contents of the object variable. (In
the example, if you remove Functl from its Functions collection, the variable Objvar
becomesinvalid.)

There are two exceptions to thisrule;

May 1997 2-11

Using OCX Controls SAPAG IV

Viewing Table Objects

« Table objectsthat have been detached (“unloaded”) from their containing Function
objects, making the Table control the Table’'s new parent.\(i&aéng Table
Objects .)

» Collection objects that have been assigned to object variables.
Both of these become independent of the containing Function object. By contrast, you

cannot detach Export/Import objects in this way. In addition, Table objects that are
simply assigned (rather than unloaded) to a variable also remain shared.

Table and Structure objects are always independent of the Function objects when a
remote function is called directly because there is no Function object created externally.

Viewing Table Objects

To set values for table parameters:
* To access fields in a row, use the Table.ltem and Row.Value properties

» To process table rows as units, use the Table.Rows property to loop through all rows,
or the Table.ltem property for direct access to a single row.

The Row object is used to retrieve column information in the Table object. Do not
attempt to use the Structure object methods on table rows; the Structure object is only for
use with objects from the Exports and Imports collections.

Remember that if you assign a row to a object variable, and then delete either the Table
object from the Tables collection object, or the row from the table (using the any of the
RemoveRow, DeleteTable, or FreeTable methods), you invalidate the contents of the
target object variable.

You can avoid this problem by detaching Table objects from the Function object. The
table component provides the methods to unload and set for detaching and reattaching
tables. A Table object unloaded to an object variable is no longer shared with the
Function object. However, Table objects that are simply assigned (rather than unloaded)
to a variable remain shared.

Using Parameter and Structure Objects

When you want to access fields in an export/import parameter defined as a structure, use
the following:

1. Assign the parameter to an object variable:

set Struct Ooj MyFunct . Export s(“Enpl oyee_Struct”) OR
Set Fi el dObj MyFunct . Export s(“Company_Nunber”)

2. Use either Parameter or Structure functions on the variable, depending on whether
the parameter is defined as a field or structure.

Struct Qoj . Val ue(“Nane”) = “Smith” OR
Fi el dOoj . Val ue = “1234”

Structure objects are provided to perform operations on export and import parameters
only. Do not attempt to use the methods and properties for this object type with table
rows.

2-12

May 1997

BV SAP AG Using OCX Controls

Using Named-Argument Calling Conventions

Structure and Parameter objects are fundamentally different from the other object types.
They are not maintained in their own collection lists, and do not occur in any other object
type as a property or method. As aresult, expressions of the form:

MyFuncti on. Structure. Val ue(“fi el d-nanme”) OR
MyFuncti on. Par anet er. Val ue

are not valid and result in runtime errors.

To get information on a parameter’s structure definition, use the online Assistant.

Using Named-Argument Calling Conventions

The named-argument calling conventions do not have qualifiersto distinguish the

importing parameters from the exporting parameters like the calling conventions used in

the ABAP language. Y ou must be aware which parameter is the importing parameter

and which parameter is the exporting parameter. From a caller’s point of view, you can
use either variables or constants for exporting parameters. However, you can only use
variables for importing parameters so that the variables can store the returned data.

From the caller’s point of view, if the exporting parameter is a structure and you want to
pass data to this parameter, you must first create a Structure object using the
CreateStructure method of the Functions collection and fill data in the Structure object. If
the importing parameter is a structure, you can pass any variable to receive the returned
Structure object. There is no need to create Structure objects yourself.

If you only want to retrieve data in table parameters, you can use any variable for the table
parameters. There is no need to create Table objects yourself. The remote Function object will
create the Table objects and store them into your variables. If you want to pass data to the table
parameters, you must first create a Table object in the table component and fill data to the able
object. Then you can pass the table object into the table parameter.

The following example illustrates these two scenarios.

2 Example

For the remote function interface:

xFunc
| mporting I P LIKE TP-1P
SIP LIKE SX STRUCTURE SX
Exporting EP LIKE TP-EP
SEP LIKE SY STRUCTURE SY
Tabl es TP STRUCTURESZ

In the first scenario, when you only want to retrieve data, the following VBA code
illustrates the calling statement:

Call the xFunc remote function.
R3. xFunc I P:= 1, SEP:= obj Struct, EP:= nVar, TP:=0bj Table
whereobj St ruct, nVar, andobj Tabl e can be uninitialized.

In the second scenario, when you want to pass data to the table parameter and the
exporting parameter with the structure type, the following VBA code illustrates the
calling statement:

May 1997 2-13

Using OCX Controls SAPAG IV

Using the Table Factory Control

Create a Structure object with structure type “SX”.
set obj MyStruct = R3. CreateStructure(*SX")

Create a Table object with table structure type “SZ".
set obj Tabl e = R3. CreateTabl e(“SZ")

Fill in data forobj MySt r uct andobj Tabl e here.

Call the xFunc remote function.

R3. xFunc | P:=1, SIP:.= obj MyStruct, EP:= nVar, SEP:.= obj Struct,
TP: =obj Tabl e

Using the Table Factory Control

Each Function object owns a collection of R/3 tables. The Table Factory control gives
you easy access to these SAP internal tables. If used from within the Function control,
Table Factory is invisible to the user. The Table Factory control provides a Tables
collection object that is used as a property in the Function object. When you access the
function’s Tables collection, Visual BaSicgets a “dispatch pointer” to the Table

control. In the previous example, tREC_CUSTOMER_GET call returns an internal

table with the name “CUSTOMER_T". To get the last row of that table and display the
ZIP code, for example, use code as shown:

‘ Get table.
Set customers = func.Tables (“CUSTOVER T')

* Get zipcode of last row.
zipCode = customers (customers.RowCount, "PSTLZ")

Using the Transaction Control

Most of the day, when communicating with users, the R/3 System executes transactions.
These are made up of a sequence of screensthat contain fields. The online user fillsin the
fields, presses a button and the next screen appears. The Transaction control allows you
to programmatically fill in these fields and proceed through the screens. No GUI is
displayed.

Y ou create a Transactions collection object just like a Functions collection object:

Set transOCX = CreateObject("SAP.Transactions.1")

Add a Transaction object:
Set trans = transOCX.Add("SE11", "DOMAIN")

Then you add screens and fields:

Set Screen = trans.Screens.Add
Screen.Program = "SAPMSRDO0"
Screen.Number = "0100"

Set Fields = Screen.Fields

Fields.Add "RSRD1-OBJNAME", "ZTST"

2-14

May 1997

BV SAP AG Using OCX Controls

Using the Table View Control

Fi el ds. Add "RSRD1- DOVA", "X'
Fi el ds. Add "BDC_OKCODE", "=ADD"

Set Screen = trans. Screens. Add
Screen. Program = " SAPVMSDO1"
Scr een. Nunber = "0100"

Set Fields = Screen. Fields

Text = "Testing at " + Str$(Hour(Now)) + ":" + Str$(M nute(Now))
Fi el ds. Add "DDO1V- DDTEXT", Text

Fi el ds. Add "DDO1V- DATATYPE', "CHAR'

Fi el ds. Add "DDO1V-LENG', "10"

Fi el ds. Add "BDC OKCODE", "/11"

Set Screen = trans. Screens. Add
Screen. Program = " SAPLSTRW

Screen. Nunber = "0100"

Screen. Fi el ds. Add "BDC_OKCODE", "/9"

Don't forget to set the Connection! Here we'll just reuse the one from above:

set transQOCX. Connection = conn

Finally we call the transaction:

if trans.Call <> true then

MsgBox “Call failed... "
End |f

‘ Display the message generated.
MsgBox "Transaction message: " + trans. Message. Val ue(" M5GTX")

Remember that with the Transaction control, you are always calling the transaction in
batch-input mode. That is, the external program can send input field values to an R/3
screen, but output field values are not returned. For complete transaction execution, with
data transfer in both directions, use B#Pl Component.

Using the Table View Control

The Table View control provides views of tables that have been retrieved from R/3. It
also allows editing of the data shown in the view and automatically gets the table
contents updated. You get access to a Table View control by using a variable. Visual
Basic (Version >= 4.0) allows this most easily.

To bind a table view to a table, you must get the table (e.g. customers), the view (e.g.
SAPTableView), and then notify the table that it now has a view. For example:

‘ Establish view-table connection.

Customers.Views.Add SAPTableView.Object

Customers.Refresh

A complete recipe follows for displaying atable from Visual Basic. Thefirst step isto

drop atable view onto aform and set its name.

May 1997 2-15

Using OCX Controls SAPAG IV

Using the Table View Control

= Custom Controls

Avalable Contrals;

O Prataiew ID0 Conkral + Cemrl
O Quick Tirme Movie
O OvickTime Picture
O 54P Generc Table Tree Contral Browse. ..

E SAF Genenc T able Yiew Contral
O SAF Logon Control
O S4P Rermote Function Call Contral

il

O SAF Table Factary

O Sax Basic Engine Contral - Foundation Help
OSHERIDAM 30 COMTROLS

B Shendan Tabbed Dialog Contral j Show

L SMTHLPZ2.00C [¥ Inzertable Objects
O Sound -

i For TP Tl + [® Controls
+i i -+

[Selected ltems Only

-1 YideoSoft vsFlex Control
Lacatiof: CWIMKNTIES pakenm 32 WEFLEXIZ O

Then, after you have retrieved the table via an RFC, you connect it to the view. In Visual
Basic, create aform, then select SAP Generic Table View Control in the Custom Control
diaog.

Anicon will be placed in the toolbox . Click on thisicon, and then create the
control in the area on the form where you want the table data displayed. Change the name
of the new object (in the Properties window) to SAPTableView. (The nameis optional,
aslong as you use the same name in the script.)

Create atext-entry field, and name it (for example) Namel nput. Then add a button and
add the following code to it (the click callback function):

Private Sub Commandl_d i ck()

‘ Create function component.

Dim fns As Object

Set fns = CreateObject("SAP.Functions.1")
fns.logfilename = "c:\tmp\table+viewlog.txt"
fns.loglevel = 8

Dim conn As Object

Set conn = fns.Connection
conn.Client = "000"
conn.Language = "E"
conn.tracelevel = 6

2-16

May 1997

BV SAP AG Using OCX Controls

Using the Table View Control

if conn.logon(0, 0) <> True then

MsgBox “Coul d not | ogon!
End |f

Di m Custoners, Custonmer As Obj ect
Di m Result As Bool ean

‘ Get the name to display from Namelnput and call function ...
Result = fns.RFC_CUSTOMER_GET(Exception, NAME1:=Namelnput, KUNNR:="*",
CUSTOMER_T:=Customers)

If Result <> True Then

MsgBox (“Call error: “ + Exception)

Exit Sub
El se

try to display table view

Cust omers. vi ews. Add TheTabl eVi ew. obj ect

Cust ormer s. Refresh

MsgBox "Got " + Str$(Custoners. RowCount) + " rows."
End If

Set fns = Nothing
Set conn = Not hi ng
End Sub

The resulting form (after the script shown in this section has run) should resemble the
following:

A, | C | E
0000003710 RJB Snack Food Divisior 100 Mission Awve
0000003720 RJB Health Foods Divisic 4321 Buffalo Rd
noooo03g00 Candid International Copil 345 Candid Dr
0000003810 Candid Mini Copiers Divizs 3867 Midland Awve
0000003820 Candid Corporate Copier /b Larson Dr
0000003391 Blip Pens Corporation 134 Ballpoint St
00000036492 | Randy kdaps Incorparater 345 Frintit D
00000038433 FH Deskiop Computers C 87 Ocean Dr.
00000035894 FH Monitar Corporation | 4321 Callahan dr
0000003845 PH Kevhboard Corporator 987 Tywpe Dr
0000003910 Infix Co. 365 E. Evelyn Aw.
000000359499 | Johnson engineering 3460 WWest Bayshare
noooood4oon. Fobera Energy Lid

El=Tal Oooono A4 o0 [ol

«| |

-

*'—ll'_‘lLCI_E.III"'\-J—"l:lED—"LAJl:lD‘.I

Seleck names [SCEL style] : I x

E wit

May 1997 2-17

Using OCX Controls SAPAG IV

Using Collection Objects

Using Collection Objects

The SAP Assistant defines several collection object types. Collection objects gather all
objects of agiven typeinto alist. (For example, all Function objects for a given control
are gathered into the Functions collection object representing that control.)

A collection object provides list—oriented functions for accessing list objects, adding and
removing from the list, looping through the list, and so on.

2 Example

To loop through a Rows collection object:

For Each Custoner in Custoners. Rows
print Custoner (“NAME’)
Next Custoner

Performance and Debugging Tips

The following sections describe techniques you can use to improve the performance and
reduce debugging time for your applications.

Avoiding Unnecessary Object Creation

Application objects and all collection objects are created dynamically when your code
makes a reference to one of them. These objects are temporary and are destroyed when
no more references to them exist. As a result, multiple accesses to one of these objects
can hurt performance. To avoid this problem, assign the object to an object variable of
your own and then make the accesses. For example, you can improve the following code:

Get Funct . Export s('P1")
Get Funct . Export s('P2")
Get Funct . Export s('P3")
Get Funct . Export s('P4”)
Get Funct . Export s('P5”)

by changing it to:
set MyExports = Get Funct. Exports
MyExports(“P1”)
MyExport s(“P2")
MyExport s(“P3")
MyExport s(“P4”)
MyExport s(“P5")

In the first code example, five temporary collection objects are created, each destroyed
after a single statement. In the second, only one temporary object is created. (This object
is not destroyed after the first statement, because the other statements still refer to it.)

2-18

May 1997

BV SAP AG Using OCX Controls

SAP Control Base Classes

Tracing RFC Calls

Y ou can request atrace of connection activity as the RFC call executes. The Tracel evel
property in the Connection object lets you specify tracing. Possible values are O (tracing
not requested) and 1 (tracing requested).

The activity information islogged in afile “RFC<random number>.TRC"” located in the
active default directory.

The Functions collection and Transactions collection objects also provide logging
functionality with the LogFileName and LogLevel properties.
Note on Embedded Property Calls

Bear in mind while coding your application that client languages may execute certain
kinds of statements differently. Of particular importance is whether or not your language
performs cascaded evaluation. An example of cascaded evaluation is the evaluation of
statements like:

MyFunct . Export s(“P1"). Val ue(“F1”)

This statement requires the language to first call the Exports property for MyFunct, and
when a Structure object is returned, call the Value property on the Structure object.

Some languages do not perform full evaluation of statements like this. They evaluate the
first call (the Exports property), but do not evaluate the returned value (a Parameter or
Structure object) to call the next property (Value method) on it. As a result, you get the
wrong object returned, and eventually a runtime error.

The Excel macro language executes the above statement correctly, while Visual Basic 3.0
does not. However, almost all interpreters fail to evaluate statements correctly when a
default function is left implicit:

Get Funct . Export s(“P1”) (“F1")

Note on Default Property Calls

Some languages do not evaluate the default value property. In this case, the default value
property must be explicitly specified:

MyFunct . Export s(“P1”) ‘ Does not work.’
MyFunct.Exports.ltem (“P1”) ‘ OK’

SAP Control Base Classes
The following reference topics on base classes are available:
SAP Sandard Collection
SAP Named Collection
Using Collection Objects
SAP Data Object

May 1997 2-19

Using OCX Controls

SAPAG WV

SAP Standard Collection

SAP Standard Collection

Name

Count

Item

Safe Arrays and Values

Font Objects

Data Types

All active OLE controls containing collections within an SAP System are implemented
according to common conventions. As long as a collection is not explicitly declared as a
non-standard collection, the following description applies to the collection. Not all
properties and methods mentioned below are available with every collection.

The lower bound index for all collectionsis 1.

For hints on using collection objects, see Using Collection Objects .

Standard Collection Properties

Parameter

void

Variant valndex Objec

Type
Long

t

Description

Returns the number of objects stored in the

collection.

Returns an object according to valndex. Item is
aways the default property.

Standard Collection Methods

Na
me

Ins
ert

Par
am
eter

Obj
ect
dep
end
ent

Var
iant
val

nde

Obj

OPT 0O PT< 45~ <c QX

e

ct

Description

Adds a new object and
returns the new object.

Inserts a new object at
position valndex and
returns the new object.

2-20

May 1997

WV SAP AG

Using OCX Controls

SAP Standard Collection

ect
dep
end
ent
Re Var B Removes the object at
mo iant o] position valhdex.
ve val o]
nde le
X a
n
Re VoI B Removes al objects
mo d o] from the collection.
ve o]
All le
a
n
Un Var @] Unloads the object at
Loa iant b position valndex.
d val je
nde ct
X

Detailed Description

Object Item(Variant valndex)

Item returns an object from the collection. The parameter val ndex identifies the position
of the abject to be returned. The type of this parameter depends on the object. It may
describe the position where the object can be found, either as a simple integer value, or as
astring value (as described in Named Collections), or in any object-dependent variant
datatype. In the following sections, the valid types are described for each collection.

Object Add (...)

The parameters for the Add method depend on the object. These parameters are used to
initialize the new object. Add always returns the new object.

Object Insert(Variant valndex,...)

The parameters for the Insert method depend on the object. These parameters are used to
initialize the new object. Insert always returns the new object. The first parameter of the
Insert methods always describes the position where to insert the new object (the new
object is always inserted in front of the position described by valndex). The type of this
parameter is object-dependent. It may describe the position where to insert the new
object, either as asimple integer value, or as a string value (as described in Named
Coallections), or as an Object which is already part of the collection. Nevertheless, the
indexing parameter always has the same meaning as the indexing parameter of the default
property Item.

May 1997

2-21

Using OCX Controls SAPAG IV

SAP Named Collection

Boolean Remove(Variant valndex)

Removes an object from its collection. The parameter val ndex identifies the position of
the object to be returned. The type of this parameter depends on the object. It may
describe the position where to insert the new object, either as a simple integer value, or as
astring value (as described in Named Collections). Nevertheless, the indexing parameter
always has the same meaning as the indexing parameter of the default property Item.

[UD Caution

When removing an object from the collection, the object becomes invalid. Any
further attempts to work on the object return an Invalid Object Exception. Use
UnLoad if the object should be removed from the collection for further use.

Object UnLoad(Variant valndex)

Unloads an object from its collection. The parameter val ndex identifies the paosition of
the object to be returned. The type of this parameter depends on the object. It may
describe the position where to unload the object, either as asimple integer value, or asa
string value (as described in Named Collections). Nevertheless, the indexing parameter
aways has the same meaning as the indexing parameter of the default property Item.

SAP Named Collection

Named collections are derived from SAP Sandard Collections. In addition, a named
collection may always work with a string as indexing parameter for methods like Item,
Insert, Remove and UnL oad. Objects within a named collection always have a Name
property which stores the indexing name. The name describing an object in a named
collection need not to be unique. If anameis used frequently, Item, Insert, Remove and
UnL oad always use the first object with the given name.

Further features of named collections are dynamic properties, created as aresult of the
objects’ names. Instead of invoking the Item property, an object may also be returned if
the name of the object is used as property.

For further hints on using collection objects, &ksing Collection Objects .

2 Example

Dim oObj as Obj ect
* Add a new empty object
Set 00bj = NamedCollectionObject.Add ()

* Assign name

oObj.Name = “ItenB’

‘ Add object an pass name as parameter.

Set 00Obj = NamedCollectionObject.Add (“I'tenC’)
‘Insert object in prior to object “I'tenB’

2-22

May 1997

BV SAP AG Using OCX Controls
SAP Data Object

Set 00bj = NanedCol | ectionObject.lnsert “(tenB’, “Item’)

* Accessing the object

‘ Retrieve second object through index

Set 00Obj = NamedCollectionObject.ltem(2)
‘ Retrieve second object through name

Set 00Obj = NamedCollectionObje ctitem(“ltenB’)

‘ Retrieve second object through dynamic property
Set 00Obj = NamedCollectionObject.ltemB

SAP Data Object

The SAP Data Object is a special object for purposes of data transport. This object is
used in drag and drop and clipboard operations. The SAP Data Object implements an
automation and an IDataObject interface. The IDataObject interface is a standard OLE
interface for data object manipulation. The automation interface displays the following

methods:
Name Parameters Return Description
Type
GetData Long cfFormat void Retrieves data
. from the data
Vaiant vaData object in the
specified format
SetData Long cfFormat void Stores data in the
. data object in the
Variant vaData specified format
IsFormatAvailable Long cfFormat Boolean Returns TRUE if
the data object
contains datain the
specified format

[UD Caution

SetData may specify aformat which is not initially cached in the data object. Since
the data object does not interpret the datain any way, the data may be of any
clipboard format. The variant data type must be any data type which is transportable
to other processes. Therefore, object may not be stored in the data object.

Valid formats are: char, short, long, String, Date, Time, Boolean and safe arrays of these
types.

May 1997 2-23

Using OCX Controls SAPAG IV

Safe Arrays and Values

2 Example

Sub DragSourceFil | (DataCbhj ect As Object)
D m cf Format As Long
DimData As String

cf Format = Regi sterd i pboar dFor mat“(MWC i pFor mat”) ;

Data = “This is ny personal string
Dat aCbj ect . Set Dat a(cf For mat, Dat a)
Sub End

Sub Dr op(Dat aCbj ect As (Obj ect)
Di m cf Format As Long
Dim Data As String

cf Format = Regi sterd i pboar dFor mat“(MWyCl i pFor mat”) ;
if Datanoject.|sFormatAvail abl e(cfFormat) then
Dat aCbj ect . Get Dat a(cf For mat, Dat a)
MsgBox(Dat a)

end if
Sub End

Safe Arrays and Values

If an SAP object returns data as a safe array, the object always has the property Data.
This property usually returns a two-dimensional safe array with a lower bound index of 1
for each dimension. An example of a Data property would be the entire content of a table
or the entire content of a row or column in a table. Single date like the content of a cell in
a table is always returned as a Variant. The corresponding property is always called
Value. If an object implements a Value property, this property is the default property.

Font Objects

Font Properties:

Table Caption
Name Type
Name String
Size Currency

2-24 May 1997

WV SAP AG

Using OCX Controls

Data Types

Bold Boolean
Italic Boolean
Underline Boolean
StrikeThrough Boolean
Weight Short
Char Set Short

For more information, see the VBA help on font objects.
Data Types

The following are the available data types:

Table Caption
Typesin Help File VBA Data Type C++ Data Type
Char Byte (By Va) unsigned char
Short Integer (By Val) short
Long Long (By Val) long
String String (By Val) BSTR
Boolean Bool (By Val) VT _BOOL
Object Object IDispatch *
Short* Integer short*
Long* Long long*
String* String BSTR*
Boolean* Bool VT _BOOL*
void Method does not returna~ void

value
Array of type (1, n) of Type VT_ARRAY |VT_Type
May 1997 2-25

